

OPTION 1: PERFORMANCE RATING METHOD

I confirm that the energy simulation software used for this project has all capabilities described in EITHER section `G2 Simulation General Requirements' in Appendix G of ASHRAE 90.1-2004 OR the analogous section of the alternative qualifying energy code used.

I confirm that the baseline building and proposed building in this project's energy simulation runs use the assumptions and modeling methodology described in EITHER Appendix G of ASHRAE 90.1-2004 OR the analogous section of the alternative qualifying energy code used.

Complete the following sections to document compliance using Option 1:

- Section 1.1 General Information
- Section 1.2 Space Summary
- Section 1.3 Advisory Messages
- Section 1.4 Comparison of Proposed Design Versus Baseline Design Energy Model Inputs
- Section 1.5 Energy Type Summary
- Section 1.6 On-Site Renewable Energy (*if applicable*)
- Section 1.7 Exceptional Calculation Measure Summary (if applicable)
- Section 1.8 Performance Rating Method Compliance Report

Section 1.1 - General Information

Provide the following data for your project

Simulation Program:	HAP 4.4	Quantity of Stories:	2
Principal Heating Source:	Electricity	Weather File:	San Antonio, TX/AP
Energy Code Used:	ASHRAE 90.1-2004 Appendix G	Climate Zone:	2B
New Construction Percent:	46 %	Existing Renovation	Percent: 54 %

Enter the Target Finder score for your building from the Energy Star website (<u>http://www.energystar.gov/index.cfm?</u> <u>fuseaction=target_finder.&CFID=154897</u>). The score has no bearing on the number of EAc1 points earned. Use the following process to evaluate the Target Finder score:

- 1. Enter the facility information
- 2. Enter the facility characteristics. Select each primary and secondary space type that applies to the project. Then complete the required information for each space type.
- 4. Enter the total energy use per energy source for your project based on the totals reflected in the Proposed Design energy simulation output report.

Target Finder Score:

Section 1.2 - Space Summary

Provide the space summary for your project

(click "CLEAR" to clear the contents of any row All numeric entries must be entered as whole numbers without commas):

Table 1.2 - Space Summary				
Building Use (Occupancy Type)	Conditioned Area (sf)	Unconditioned Area (sf)	Total Area (sf)	
Building 1-A - Retail and Offices	15,993	0	15,993	CLEAR
Building 1-B - Retail and Offices	15,028	2,749	17,777	CLEAR
Building 2 - Office	21,162	0	21,162	CLEAR
Building 3 - Apartments	8,454	0	8,454	CLEAR
Building 4 - Cafe	2,844	0	2,844	CLEAR
Areas outside of building envelope		22,228	22,228	CLEAR
				CLEAR
Total:	63,481	24,977	88,458	

Section 1.3 - Advisory Messages

Complete the following information from the simulation output files (all entries should be entered as whole numbers, without commas)

TABLE 1.3 - Advisory Messages	Proposed Building	Baseline Building (0 deg. rotation)	Difference
Number of hours heating loads not met:	0	0	0
Number of hours cooling loads not met:	10	1	9
Number of warning messages:	0	0	0
Number of error messages:	0	0	0
Number of defaults overridden:	0	0	0

Section 1.4 - Comparison of Proposed Design Versus Baseline Design Energy Model Inputs

Use **Table 1.4** to document the Baseline and Proposed design energy model inputs for your project. Include descriptions for:

- 1. Exterior wall, underground wall, roof, floor, and slab assemblies including framing type, assembly R-values, assembly U-factors, and roof reflectivity when modeling cool roofs. (Refer to ASHRAE 90.1 Appendix A)
- 2. Fenestration types, assembly U-factors (including the impact of the frame on the assembly), SHGCs, and visual light transmittances, overall window-to-gross wall ratio, fixed shading devices, and automated movable shading devices.
- 3. Interior lighting power densities, exterior lighting power, process lighting power, and lighting controls modeled for credit. Any lighting not included in the Core and Shell project must be modeled identically in the design and baseline case.
- 4. Receptacle equipment, elevators or escalators, refrigeration equipment, and other process loads.
- 5. HVAC system information including types and efficiencies, fan control, fan supply air volume, fan power, economizer control, demand control ventilation, exhaust heat recovery, pump power and controls, and any other pertinent system information. (Include the ASHRAE 90.1-2004 Table G.3.1.1B Baseline System Number).
- 6. Domestic hot water system type, efficiency and storage tank volume.
- 7. General schedule information

Documentation should be sufficient to justify the energy and cost savings numbers reported in the Performance Rating Table.

TABLE 1.4 - Comparison c	of Proposed Design Versus Baseline Design	I	
Model Input Parameter	Proposed Design Input	Baseline Design Input	
Exterior Wall Construction	Steel Frame Construction Minimum R-13 Spray Foam Insulation	Additions: Steel Frame Construction R-13 Insulation	CLEAR
Roof Construction	Metal Building R-19 Insulation Overall U - Factor - 0.049	Original roof: 2 inch insulation, R6, Overall U - Factor 0.147, reference ASHRAE 90.1, Appendix A, Table 42.2 Assembly LL-Eactor for Boofs with	CLEAR
Floor/Slab Construction	Mass C - 1.140	Mass C - 1.140	CLEAR
Window-to-gross wall ratio	17%	17%	CLEAR
Fenestration type	1. Dual Pane Metal Frame, tinted low-E glass with thermal break.	1. North, South, East, and West Orientations	CLEAR
Fenestration U-factor	Average overall U value 0.56	1. 1.22	CLEAR
Fenestration SHGC - North	1. 0.49 2. 0.71	1. 0.25	CLEAR
Fenestration SHGC - Non-North	1. 0.49 2. 0.71	2. 0.25	CLEAR
Fenestration Visual Light Transmittance	1. 0.40 2. 0.66	1. 0.76 2. 0.76	CLEAR
Shading Devices	1. None 2. None	1. None 2. None	CLEAR
			CLEAR
Interior Lighting Power Density (W/sf)	Building 1-A: Office = 1.1, Retail = 1.7 Building 1-B: Office = 1.1, Retail = 1.7 Building 2: Office = 1.1	Building 1-A: Office = 1.1, Retail = 1.7 Building 1-B: Office = 1.1, Retail = 1.7 Building 2: Office = 1.1	CLEAR

(Click "CLEAR" to clear the contents of anv row.)

None None 12.1	None	CLEAR
	None	
12.1		CLEAR
	12.1	CLEAR
None	None	CLEAR
0.75	0.75	CLEAR
Building 1A: (1)-Water Heater electric type, 220 volt, 4.5 kW, 50 gal, eff=091 Building 2: (2) Water Heater electric type, 220	Building 1A: (1)-Water Heater electric type, 220 volt, 4.5 kW, 50 gal, eff=091 Puilding 2: (2) Water Heater electric type, 220	CLEAR
Variable Refrigerant Volume Heat Pump Systems Without Resistance Heat	Table G3.1.1B System # 4 Package Roof Top Heat Pump. Direct Expansion	CLEAR
None	None	CLEAR
46,903 CFM	107,304 CFM (Average of 4 rotations)	CLEAR
36.8 kW	80.5 kW	CLEAR
None	None	CLEAR
None	None	CLEAR
Model: RXYQ96MTJU (96k BTU/h) 11.07 EER Model: RXYQ72MTJU (72k BTU/h) 12.63 EER	12 SEER <65,000 BTU/h 10.1 EER greater or equal to 65k BTU/h and less	CLEAR
Model: RXYQ96MTJU (109k BTU/h) 3.47 COP Model: RXYQ72MTJU (81k BTU/h) 3.59 COP	7.4 HSPF <65,000 BTU/h 3.2 COP greater or equal to 65k BTU/h and less	CLEAR
None	None	CLEAR
	Building 1A: (1)-Water Heater electric type, 220 Volt, 4.5 kW, 50 gal, eff=091 Ruilding 3: (8)-Water Heater electric type, 220 Variable Refrigerant Volume Heat Pump Systems Without Resistance Heat None 46,903 CFM 36.8 kW None None None Nodel: RXYQ96MTJU (96k BTU/h) 11.07 EER Model: RXYQ96MTJU (96k BTU/h) 11.07 EER Model: RXYQ96MTJU (96k BTU/h) 11.08 EEP Model: RXYQ96MTJU (109k BTU/h) 12.63 EER Model: RXYQ96MTJU (109k BTU/h) 12.63 EER Model: RXYQ96MTJU (109k BTU/h) 13.67 COP Model: RXYQ96MTJU (109k BTU/h) 3.59 COP Model: RXYQ72MTJU (81k BTU/h) 3.59 COP Model: RYY0736MVIII (40k RTII/h) 3.58 COP None None None	NoneNoneNone12 SEER <65,000 BTU/h 10.4 EX XV272XTTU (19.4 BTU/h) 11.05 EER Model: RXYQ27XTTU (19.4 BTU/h) 13.5 COP Model: RXYQ27XTTU (19.4 BTU/h) 13.5 COP Model: RXYQ27XTTU (19.4 BTU/h) 13.5 COP Model: RXYQ27XTTU (19.4 BTU/h) 13.6 ECP Model: RXYQ27XTTU (19.4 BTU/h) 13.6 ECP MODE Mone None <br< td=""></br<>

Section 1.5 - Energy Type Summary

List the energy types used by your project (i.e. electricity, natural gas, purchased chilled water or steam, etc.) for either the Baseline or Proposed design. Also describe the utility rate used for each energy type (i.e. Feswick County Electric LG-S), as well as the units of energy used, and the units of demand used. (Click "CLEAR" to clear the contents of any row):

TABLE 1.5 - Energy Type Sum	mary			
Energy Type	Utility Rate Description	Units of Energy	Units of demand	
Electricity	CPS Energy (\$0.096/kWh)	kWh	kW	CLEAR
Natural Gas	CPS Energy (\$0.437/therms)	therms	МВН	CLEAR
				CLEAR
				CLEAR

Energy Units:		Demand Units	
1 kBtu = 1,000 Btu	1 MBtu = 1,000 kBtu	1 MBH = 1,000 Btu/h	1 MMBtuh = 1,000 MBH
1 kWh = 3.412 kBtu	1 MWh = 3,412 kBtu	1 kW = 3.412 MBH	1 ton = 12 MBH
1 therm = 100 kBtu	1 ton hr = 12 kBtu		

Section 1.6 - On-Site Renewable Energy

If the project does not include on-site renewable energy, skip to Section 1.7

\boxtimes	The project includes On-Site Renewable Energy
How	is the on-site renewable energy cost calculated?
۲	This form will automatically calculate the <i>Renewable Energy Cost</i> based on the "virtual" energy rate from the proposed design energy model results. This form will subtract the <i>Renewable Energy Cost</i> from the proposed design energy model results to calculate the <i>Proposed Building Performance Rating</i> . (You do NOT need to fill out the "Renewable Energy Cost" field in Table 1.6 below)
С	Renewable Energy Cost for each on-site renewable source is analyzed separately from the energy model based on local utility rate structures. The Renewable Energy Cost for each renewable source is reported in Table 1.6 below, This form will subtract the reported Renewable Energy Cost from the proposed design energy model results to calculate the Proposed Building Performance Rating.
С	On-site renewable energy is modeled directly in the energy model. <i>Renewable Energy Cost</i> is already credited in the proposed design energy model results (i.e. the energy model already reflects zero cost for on-site renewable energy, and this form will NOT subtract the <i>Renewable Energy Cost</i> a second time).

Indicate the on-site renewable energy source(s) used, the backup energy type for each source (i.e. the fuel that is used when the renewable energy source is unavailable - ASHRAE 90.1-2004, Section G2.4), the rated capacity for the source, and the annual energy generated from each source.

TABLE 1.6 - Renewable Ene	ergy Source Summary					
Renewable Source	Backup Energy Type	Annual Ene Generate	57	Rated Capacity	Renewable Energy Cost	
Photovotaic System	Electricity	271,864	(kWh)	200.6 kW	\$26,099	CLEAR
						CLEAR

(

Section 1.7 - Exceptional Calculation Measure Summary

(If the energy analysis does not include exceptional calculation methods, skip to Section 1.8)

The energy analysis includes exceptional calculation method(s) (ASHRAE 90.1-2004, G2.5)

How is the exceptional calculation measure cost savings determined?

This form will automatically calculate the exceptional calculation measure cost savings based on the "virtual"
energy rate from the proposed design energy model results. This form will subtract this cost savings from the proposed design energy model results to calculate the *Proposed Building Performance Rating*.

Exceptional calculation measure cost for each exceptional calculation measure is analyzed based on local utility rate structures. The *cost savings* for each exceptional calculation is reported below, This form will subtract the reported exceptional calculation cost savings from the proposed design energy model results to calculate the *Proposed Building Performance Rating*.

For each exceptional calculation method employed, document the predicted energy savings by energy type, the energy cost savings (if option 2 above is selected), and a narrative explaining the exceptional calculation method performed, and theoretical or empirical information supporting the accuracy of the method. Reference any applicable Credit Interpretation Rulings. [Note: if an end-use has an energy loss rather than an energy savings, enter it as a negative number]

Exceptional Calculati	ion Measure Short Descrip	tion:	CLEAR
Energy Type(s)	Annual Energy Savings by Energy Type	Annual Cost Savings	Exceptional Calculation Measure Narrative:

Exceptional Calculat	ion Measure Short Descrip	tion:	CLEAR
Energy Type(s)	Annual Energy Savings by Energy Type	Annual Cost Savings	Exceptional Calculation Measure Narrative:

Adobe LiveCycle

Section 1.8 - Performance Rating Method Compliance Report (Option 1 Compliance Only)

In **Table 1.8.1**, list each energy end use for your project (including all end uses reflected in the baseline and proposed designs). Then check whether the end-use is a process load, select the energy type, and list the energy consumption and peak demand for each end-use for all four Baseline Design orientations. In **Table 1.8.1(b)** indicate the total baseline energy cost for each energy type for all four Baseline Design orientations. If either the baseline or proposed design uses more than one energy type for a single end use (i.e. electric resistance reheat, and central natural gas heating), enter each energy type as a separate end use (i.e. *Heating - Electric*, and *Heating*, *NG*).

Fill out the Proposed Design energy consumption and peak demand for each end use in **Table 1.8.2**. In **Table 1.8.2** (b) indicate the total proposed energy cost for each energy type. [Note: Process loads for the proposed design must equal those listed in the Baseline design. Any process load energy savings for the project must be reported in Section 1.7.]

(Click "CLEAR" to clear the contents of any end use)

End Use	Process?	Baseline Design Energy Type	Units of A Energy & Dema	& Peak	Baseline (0° rotation)	Baseline (90° rotation)	Baseline (180° rotation)	Baseline (270° rotation)	Baseline Design	
nterior Lighting		Electricity	Energy Use	(kWh)	230,445	230,445	230,445	230,445	230,445	CLEA
Interior Lighting		Liectheity	Demand	(kW)	66	66	66	66	66	
Exterior Lighting		Electricity	Energy Use	(kWh)	52,815	52,815	52,815	52,815	52,815	CLEAI
		Electricity	Demand	(kW)	12.1	12.1	12.1	12.1	12.1	CLEAI
		Electricity	Energy Use	(kWh)	73,118	74,177	73,704	72,742	73,435.3	CLEAN
Space Heating			Demand	(kW)	296.8	297.7	297.9	298.3	297.7	CLEAR
Space Cooling		Electricity	Energy Use	(kWh)	249,024	246,243	245,123	243,296	245,921.5	CLEAN
	Electricity	Demand	(kW)	175.9	172.8	172.2	169.8	172.7	CLEAR	
			Energy Use	(kWh)						
Pumps		Electricity	Demand	(kW)						CLEAR
llast Daiastian			Energy Use	(kWh)						
Heat Rejection		Electricity	Demand	(kW)						CLEAF
Forma Interview			Energy Use	(kWh)	467,155	469,415	470,213	470,165	469,237	CLEAN
Fans - Interior		Electricity	Demand	(kW)	80.3	80.6	80.6	80.6	80.5	CLEAI
Tang Darking Carage		Electricity	Energy Use	(kWh)	12,025	12,025	12,025	12,025	12,025	
Fans - Parking Garage	Electricity	Demand	(kW)	2.7	2.7	2.7	2.7	2.7	CLEA	
Sonvice Water Heating		Electricity	Energy Use	(kWh)	53,114	53,114	53,114	53,114	53,114	
Service Water Heating		Electricity	Demand	(kW)	40	40	40	40	40	CLEAI
			Energy Use	(kWh)	172,278	172,278	172,278	172,278	172,278	
Receptacle Equipment	\boxtimes	Electricity	Demand	(kW)	51	51	51	51	51	CLEAF

Adobe LiveCycle

Table 1.8.1 - Baseline Performance - Performance Rating Method Compliance

				-			-		
End Use	Process?	Baseline Design Energy Type	Units of Annual Energy & Peak Demand	Baseline (0° rotation)	Baseline (90° rotation)	Baseline (180° rotation)	Baseline (270° rotation)	Baseline Design	
Interior Lighting (Process)	\boxtimes	Electricity	Energy Use (kWh)						CLEAR
		ŕ	Demand (kW)						
Refrigeration	\square	Electricity	Energy Use (kWh)						CLEAR
nemgeration		Liectheity	Demand (kW)						CLEAN
Data Center Equipment		Electricity	Energy Use (kWh)						CLEAR
			Demand (kW)						CLEAN
Cooking		Natural Gas	Energy Use (therms)	1,646	1,646	1,646	1,646	1,646	CLEAR
			Demand (MBH)	164.6	164.6	164.6	164.6	164.6	CLEAN
Elevators & Escalators	\boxtimes	Electricity	Energy Use (kWh)	48,384	48,384	48,384	48,384	48,384	CLEAR
			Demand (kW)	13.5	13.5	13.5	13.5	13.5	CLEAN
Miscellaneous		Electricity	Energy Use (kWh)	6,957	6,957	6,957	6,957	6,957	CLEAR
	\square	Electricity	Demand (kW)	45.3	45.3	45.3	45.3	45.3	CLEAR
Baseline Energy Totals:		Total Annual Energy	Use (MBtu/year)	4,823	4,825	4,822	4,812	4,821	
		Annual Process Ener					941		

Note: Process Cost accounts for 17% of Baseline Performance. Process cost must equal at least 25% of Baseline Performance, or the narrative at the end of this form must document why this building's process costs are less than 25%

Table 1.8.1(b) - Baseline Energy Costs

Energy Type	Baseline Cost (0° rotation)	Baseline Cost (90° rotation)	Baseline Cost (180° rotation)	Baseline Cost (270° rotation)	Baseline Building Performance
Electricity	\$135,700	\$135,756	\$135,672	\$135,390	\$135,629
Natural Gas	\$719	\$719	\$719	\$719	\$719
Total Baseline Costs:	\$136,419	\$136,475	\$136,391	\$136,109	\$136,348

Table 1.8.2 - Performance Rating Table - Performance Rating Method Compliance									
	End Use	Process?	Proposed Design Energy Type	Proposed Design Units	Proposed Building Results	Baseline Building Units	Baseline Building Results	Perc Savi	
	nterior Lighting		Electricity	Energy Use (kWh)	229,230	Energy Use (kWh)	230,445	.5	%
			Electricity	Demand (kW)	65.9	Demand (kW)	66	.4	%

LEED-CS 2.0 Certification Submittal Template EA Credit 1: Optimize Energy Performance

Exterior Lighting		Electricity	Energy Use (kW	h) 52,815	Energy Use (kWh)	52,815	0	%
		Liectheity	Demand (kW)	12.1	Demand (kW)	12.1	0	%
		Electricity	Energy Use (kW	h) 13,964	Energy Use (kWh)	73,435.3	81	%
Space Heating		Liectheity	Demand (kW)	69.5	Demand (kW)	297.7	76.7	%
Space Cooling		Electricity	Energy Use (kW	h) 200,620	Energy Use (kWh)	245,921.5	18.4	%
space coomig		Electricity	Demand (kW)	122.2	Demand (kW)	172.7	29.4	%
Pumps		Electricity	Energy Use (kW	h)	Energy Use (kWh)		0	%
rumps		Liectheity	Demand (kW)		Demand (kW)		0	%
Heat Rejection		Electricity	Energy Use (kW	h)	Energy Use (kWh)		0	%
		Electricity	Demand (kW)		Demand (kW)		0	%
Fans - Interior		Electricity	Energy Use (kW	h) 211,791	Energy Use (kWh)	469,237	54.9	%
rans - interior		Electricity	Demand (kW)	36.8	Demand (kW)	80.5	54.4	%
Fans - Parking Garage		Electricity	Energy Use (kW	h) 12,025	Energy Use (kWh)	12,025	0	%
rails - raiking Galage		Electricity	Demand (kW)	2.7	Demand (kW)	2.7	0	%
Service Water Heating		Electricity	Energy Use (kW	h) 53,114	Energy Use (kWh)	53,114	0	%
Service water Heating		Electricity	Demand (kW)	40	Demand (kW)	40	0	%
Receptacle Equipment		Electricity	Energy Use (kW	h) 172,278	Energy Use (kWh)	172,278	0	%
	X	Electricity	Demand (kW)	51	Demand (kW)	51	0	%
Interior Lighting (Process)	×	Electricity	Energy Use (kW	h)	Energy Use (kWh)		0	%
interior Lighting (Frocess)			Demand (kW)		Demand (kW)		0	%
Refrigeration		Electricity	Energy Use (kWl	h)	Energy Use (kWh)		0	%
Reingeration	×	Electricity	Demand (kW)		Demand (kW)		0	%
Data Center Equipment		Electricity	Energy Use (kW	h)	Energy Use (kWh)		0	%
	×	Electricity	Demand (kW)		Demand (kW)		0	%
Cooking	\sim	Natural Gas	Energy Use (therr	ms) 1,646	Energy Use (therms	5) 1,646	0	%
Cooking	×	Natural Gas	Demand (MBH	l) 164.6	Demand (MBH)	164.6	0	%
Elevators & Escalators			Energy Use (kW	h) 48,384	Energy Use (kWh)	48,384	0	%
	×	Electricity	Demand (kW)	13.5	Demand (kW)	13.5	0	%
Miscellaneous		Electricity	Energy Use (kWl	h) 6,957	Energy Use (kWh)	6,957	0	%
wiscellalieous	×		Demand (kW)	45.3	Demand (kW)	45.3	0	%
Enorgy Totals		Total Annual Energy	Use (MBtu/year)) 3,581		4,821	25.7	%
Energy Totals:		Annual Process Ener	rgy (MBtu/year)) 941		941	0	%

		Proposed	Design		Baseline Design				Percent Savings		
Energy Type	Energy Use		Cost	Energy Use		Cost	Energy Use		Cost		
Electricity	1,001,178	kWh	\$96,113	1,364,611	kWh	\$135,629	26.6	%	29.1	%	
Natural Gas	1,646	therms	\$719	1,646	therms	\$719	0	%	0	%	
	0			0			0	%	0	%	
	0			0			0	%	0	%	
Subtotal (Model Outputs):	3,581	(MBtu/year)	\$96,832	4,821	(MBtu/year)	\$136,348	25.7	%	29	%	
On-Site Renewable Energy	Energy G	enerated	Renewable Energy Cost								
Photovotaic System	271,864	(kWh)	\$26,098	(subtracted	from model r	esults to reflect Prop	osed Buildin	g Pe	erforma	ince	
			0	(subtracted	from model r	esults to reflect Prop	osed Buildin	g Pe	erforma	nce	
Exceptional Calculations	Energy	Savings	Cost Savings								
	Design	ign Baseline Desig		Design	esign Percer		nt Savings				
	Energ	y Use	Cost	Energ	gy Use	Cost	Energy	/	Cos	st	
Total:	2,653	(MBtu/year)	\$70,734	4,821	(MBtu/year)	\$136,348	45	%	48.1	%	

DOCUMENTATION DESCRIPTION LOG

Please upload the compliance summaries for ASHRAE 90.1-2004 (or qualifying local energy code) and/or LEED if available from the energy simulation software used. Please also upload the energy rate tariff from the project's energy providers if the project is not using the default rates in the LEED-NC v2.2 Reference Guide.

If the software is incapable of producing the energy code or LEED compliance summaries please provide output summaries and example input summaries for both the baseline and proposed buildings that support the data entered in the template tables above.

* Output summaries must include simulated energy consumption by end use as well as total building energy consumption and cost by energy type used in the building.

* Example input summaries must be a sampling of model input assumptions, focusing on the most common systems present in the building. The example input summaries should be taken from the simulation software's standard input reports if available; if the software will not produce input summary reports then screen captures of representative inputs are acceptable. The example input summaries must include samples of the following input information:

- 1. Occupancy levels, operation schedules, and HVAC setpoints for occupied and unoccupied periods
- 2. Assumed envelope component sizes and traits (area, R-value, U-value, etc.)
- 3. Assumed mechanical equipment types and traits (capacity, efficiency, etc.)

Please note that uploaded documents should be SUMMARIES, and not large quantities of detailed data

Documentation Description Log In the text box below, please reference the file name of each uploaded file (e.g. simulationsummary.pdf)

EA CREDIT 1 DESIGN REVIEW CLARIFICATION RESPONSES.pdf Daikin Submittal .pdf Electrical Gas Rates .pdf Full Goods Mechanical Construction Documents .pdf Natural Gas Consumption Calculation .pdf

I have provided the appropriate supporting documentation in the document upload section of LEED Online. Please refer to the above sheets.

The key plan on the mechanical drawings indicate the buildings by numbers. The building envelope compliance documents indicate the buildings by letters. Building 1 is Building A & B. Building 2 is Building C. Building 3 is Building D. Building 4 is Building E.

Adobe LiveCycle

OPTION 2: ASHRAE ADVANCED ENERGY DESIGN GUIDE FOR SMALL OFFICE BUILDINGS, 2004

The building complies with all the prescriptive measures of the ASHRAE Advanced Energy Design Guide for Small Office Buildings 2004. The following restrictions are applicable:

The project is less than 20,000 square feet.
The project is office occupancy.
The project has fully complied with all applicable Envelope Performance criteria as established in the Advanced Energy Design Guide for the climate zone in which the building is located (1 Point Possible)
The project has fully complied with all applicable Lighting Systems criteria as established in the Advanced Energy Design Guide (1 Additional Point Possible)
The project has fully complied with all applicable HVAC and Service Water Heating criteria as established in the Advanced Energy Design Guide for the climate zone in which the building is located (1 Additional Point Possible)
Climate zone

OPTION 3: ADVANCED BUILDINGS BENCHMARK [™] VERSION 1.1

The project fully complies with the Basic Criteria and Prescriptive Measures of the Advanced Buildings Benchmark[™] Version 1.1 with the exception of the following sections: 1.7 Monitoring and Trend-logging, 1.11 Indoor Air Quality, and 1.14 Networked Computer Monitor Control.

Climate zone

